

0040-4039(94)E0228-P

Studies Towards the Total Synthesis of Rapamycin: Preparation of the Cyclohexyl C₃₃-C₄₂ Fragment and Further Coupling to Afford the C₂₂-C₄₂ Carbon Unit.

Cyrille Kouklovsky, Steven V. Ley* and Stephen P. Marsden

Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK.

Abstract: A short and stereoselective synthesis of the C_{33} - C_{42} fragment 3 of rapamycin and its coupling with the previously prepared C_{22} - C_{32} fragment 2 is described. The synthesis of 3 involves the preparation of enantiomerically enriched methylene cyclohexane derivative 7, followed by side-chain elaboration. The coupling is made by reaction of the lithio anion of the dithioacetal monosulfone 11 on the epoxide 3.

In the previous paper,¹ we reported our general synthetic plan towards the potent immunosuppressive agent rapamycin.² We also described the synthesis of the C_{22} - C_{32} portion 2 of this molecule. Here we discuss the preparation of the C_{33} - C_{42} cyclohexyl epoxide fragment 3 and its subsequent coupling with 2 to afford a fully functionnalized C_{22} - C_{42} carbon framework 4 necessary for later transformation to the natural product (Scheme 1).

For the synthesis of 3, we have developed a method for the stereoselective synthesis of methylene cyclohexane derivatives as key intermediates, involving intramolecular reaction of an allylsilane with an oxonium cation generated from an α -alkoxysulfone.³ Thus, the previously prepared β -ketosulfone 5 was

subjected to asymmetric reduction using borane.DMS and 10% of the CBS oxaborolizidine catalyst⁴ to give the β -hydroxysulfone 6 along with the *syn* isomer in the ratio of 1:2 in quantitative yield.⁵ The enantiomeric excess of the *anti* isomer was determined to be of 80%.⁶ The unwanted *syn* isomer could be readily oxidized (PDC, DCM) to 5 for recycling. The *anti* isomer 6, after silylation with *tert*-butyldimethylsilyl trifluoromethane sulfonate (TBS triflate) was treated with a solution of tin tetrachloride in dichloromethane at -78°C to give 7 in 60% overall yield, as a 5:1 ratio of *trans/ cis* isomers. Hydroboration of 7 to the alcohol 8 proceeded well and the minor stereoisomer from cyclization was removed at this stage.⁷ Following oxidation of 8 using Swern conditions⁸ to give the intermediate aldehyde, addition (-)-(*E*) crotyl diisocampheylborane afforded, after oxidative work-up, 9 as the major product in 64% yield, readily separable from any contaminating isomers. The hydroxyl group in the side chain is ideally placed to direct the final epoxidation reaction using standard conditions⁹ (TBHP, VO(acac)₂) to give 10 as a 4:1 mixture of diastereoisomers readily separable by reduction with tributyltin hydride¹⁰ to give the desired epoxide 3¹¹ in 70% yield for two steps (Scheme 2).

Scheme 2

a: BH₃/ DMS, 10% CBS, THF, 100%; *syn / anti* : 2:1; *ee anti*: 80%;b: TBSOTf, Pyridine, DMAP, CH₂Cl₂, 0°C; c: SnCl₄, CH₂Cl₂, -78°C, 60% overall; d: 9-BBN, THF, 0° to 25°C, H₂O₂, NaOH, 80%, separation of isomers; e: (COCl)₂, DMSO, Et₃N, CH₂Cl₂, 90%; f: (-)-(*E*)-(*i*Pc)₂-CH₂-CH=CH-CH₃, THF/ Et₂O, -78°C, H₂O₂, OH⁻, separation of diastereoisomers; 70%; g: ¹BuOOH, VO(acac)₂, CH₂Cl₂, 90%; h: ⁿBuLi, THF, -20°C, CIC(=S)OPh, 85%; i: ⁿBu₃SnH, AIBN, Benzene, reflux, 80%.

For the coupling of the components, we have chosen to use the methodology of Tokate¹² and co-workers whereby α -sulfenyl sulfones are used as acyl anion equivalents. Accordingly, sulfone 2 was deprotonated ('BuLi, THF, -78°C) and treated with dimethyl disulfide to give 11 as a 1:1 mixture of diastereoisomers (81% yield) which was not purified but directly used in the next reaction. Thus, deprotonation of 11 ('BuLi, THF, -78°C), addition of a solution of the epoxide 3 (1.1 eq.) followed by addition of boron trifluoride etherate (BF₃ etherate, 2 eq.) gave after 2 h (-78° to 0°C) the coupled product 4 in an unoptimised 46% yield (Scheme 3).

It is interesting to notice that upon work-up 4 is obtained with the ketone function already deprotected 13 . According to the work of Tokate, the hydrolysis of dithioketal monosulfones requires stronger conditions and long reaction times (CuCl₂, SiO₂ or anodic hydrolysis). In our case, we attribute the easy hydrolysis to the presence of BF₃ etherate which can hydrolyse *in situ* the dithioketal to thioketone derivative (Scheme 4). This explains the need for two equivalents of BF₃ etherate in the coupling reaction.

Scheme 4

In conclusion, in a short sequence of reactions, the epoxide 3 has been prepared and coupled to a derivative of 2 to afford the C_{22} - C_{42} carbon framework of rapamycin. Further functional group manipulation and completion of the synthesis are currently under investigation and will be reported in due course.

Acknowledgements: We thank the SERC for a Quota Award and Zeneca Agrochemicals for a postgraduate scholarship (to SPM) and BP for a Research Professorship Endowment (to SVL). Additional financial support from Pfizer Central Research is also gratefully acknowledged.

References and footnotes

- 1.
- Anderson, J.C., Ley, S.V. and Marsden, S.P., see previous paper and references therein. Isolation: Vezina, C., Kudelski, A. and Sehgal, S.N., J. Antibiot., 1975, 28, 721; Sehgal, S.N., Baker, H. and Vezina, C., J. Antibiot., 1975, 28, 727; structure: Swindells D.C.N., White P.S. and Findlay J.A., Can. J. Chem., 1978, 56, 2491; Findlay J.A. and Radics L., Can. J. Chem., 1980, 58, 579. 2.
- Ley, S.V. and Kouklovsky, C., Tetrahedron, in press. 3.
- 4 Corey, E.J., Bashki, R.K. and Shibata, S., J. Am. Chem. Soc., 1987, 109, 5551; this catalyst was derived from (+) L-proline and prepared according to the procedure of Merck & Co: Mathre, D.J., Jones, T.K., Xavier, L.C., Blacklock, T.J., Reamer, R.A., Mohan, J.J., Tirner Jones, E.T., Hoogsteen, K., Baum, M.W. and Grabowski, E.J.J., J. Org. Chem, 1991, 56, 751.
- 5. Satisfactory spectral and analytical data were obtained for all the proposed structures. Complete experimental data for intermediates 5, 6 and 7 (as racemic mixtures) can be found in ref. 3.
- 6. The enantiomeric excess of anti 6 was diffucult to determinate by derivatization due to the low reactivity of the hydroxyl function. It was found easier to determinate the ee on a later intermediate.
- The *ee* of **8** was determinated to be ca. 80% by 19 F NMR analysis of the Mosher's ester derivative. 7. Desilylation of 8 (HF, CH₃CN) furnished (IR 2R 4R) 4-hydroxymethyl 2-methoxy 1-cyclohexanol, $[\alpha]_D$ -45 (c= 0.6, CHCl₃), which is a degradation product of FK-506 and the optical rotation of which is reported to be -57 (c= 0.5, CHCl3): Tanaka, H., Kuroda, A., Murasawa, H., Hatanaka, H., Kino, T., Goto, T., Hashimoto, M. and Taga, T., J. Am. Chem. Soc., 1987, 109, 5031. Mancuso, A.J. and Swern, D., Synthesis, 1981, 165. 8.
- Mihelich, E.D., Daniels, K. and Eickoff, D.J., J. Am. Chem. Soc., 1981, 103, 7690.
 Robins, M.J. and Wilson, J.S., J. Am. Chem. Soc., 1981, 103, 932.
- 11. Data for epoxide 3: [α]_D= -20.95 (c= 0.99, CHCl₃); ¹H NMR (400 MHz, CDCl₃, rapamycin numbering): δ (ppm): 3.39 (3H, s, OMe), 3.38 (1H, partially obscured m, C₃₉-H), 2.89 (1H, dt, J= 9 and 2 Hz, C₄₀-H), 2.67 (2H, m, C₃₃-H x 2), 2.45 (1H, ddd, J= 6, 5 and 3, C₃₄-H), 2.02 (1H, dt, J= 9 and 2, C_{38} -H ax.), 1.82 (1H, m, C_{35} -H), 1.67 (1H, m, one of C_{41} -H), 1.48 (1H, m, one of C_{42} -H), 1.45-1.35 (3H, m, one of C_{36} -H, C_{37} -H and one of C_{41} -H), 1.22 (1H, m, one of C_{36} -H), 0.91 (1H, partially obscured m, one of C_{42} -H), 0.90 (3H, d, J= 7 Hz, C_{35} -Me), 0.88 (9H, s, 'BuSi), 0.83 (1H, partially obscured m, C38-H eq.), 0.07 and 0.05 (6H, 2s, Me2Si); ¹³C NMR (100 MHz, CDCl3): 8 (ppm): 84.5 (C39), 75.7 (C40), 58.0 (C34), 57.2 (OMe), 45.5 (C33), 41.7 (C36), 36.6 (C38), 33.9 (C_{41}) , 33.5 (C_{37}) , 33.2 (C_{35}) , 31.3 (C_{42}) , 25.9 $((CH_3)_3$ -C-Si), 18.2 $(Me_3$ -C-Si), 16.1 $(C_{35}$ -CH₃), -4.5 and -4.7 (Me₂-Si); Mass (EI): m/z: 329 (MH⁺), 328 (M⁺), 313 (M-Me), 271, 239, 165, 147, 135, 121, 105, 89 (100%), 73; HRMS calculated for C₁₈H₃₆O₃Si; Calc: 328.2433: Found: 328.2405.
- 12. Murata, Y., Inomata, K., Kinoshita, H. and Tokate, H., Bull. Chem. Soc. Jpn., 1983, 56, 2534.
- 13. Data for compound 4: ¹H NMR (400 MHz, CDCl₃, rapamycin numbering): δ (ppm): 71.7 and 6.84 (2H, 2d, J= 8.3 Hz, Ar-H), 5.76 (1H, d, J= 9, C_{30} -H), 4.53 (1H, d, J= 3, C_{22} -H), 4.35 (1H, m, C_{34} -H), 4.20 and 4.11 (2H, 2d, J= 10, CH₂-Ar), 3.97 (1H, d, J= 8, C_{28} -H), 3.79 (3H, s, OMe), 3.71 (1H, m, probably OH), 3.68 (1H, d, J= 7, C_{26} -H), 3.40 (3H, s, OMe), 3.39 (1H, partially obscured m, C_{39} -H), 3.28 (3H, s, OMe), 3.25 (3H, s, OMe), 3.30 (1H, masked d, C_{27} -H), 2.91 (1H, dt, C_{40} -H), 2.32-2.22 (3H, m, C_{31} -H and C_{33} -H x 2), 2.05 (1H, m, one of C_{38} -H), 1.88 (2H, m, C_{23} -H and C_{25} -H), 1.76 $(2H,m, C_{35}-H \text{ and one of } C_{41}-H)$, 1.55 (3H, d, J= 0.8, C₂₉-Me), 1.60-1.36 (5H, m, one of C₂₄-H, C₃₆-H x 2, C₃₇-H and one of C₄₂-H, 1.28-1.12 (2H, m, one of C₂₄-H and one of C₄₁-H), 0.95 (3H, d, J= 7, C35-Me, 0.91 (1H, masked m, one of C42-H, 0.88 (18H, broad s, 'BuSi, C23-Me, C25-Me and C_{31} -Me), 0.83 (1H, masked m, one of C_{38} -H, 0.07 and 0.06 (6H, 2s, Me₂Si); the presence of the ketone function is further confirmed by a signal at 216.3 ppm on the ¹³C spectrum (50 MHz, CDCl₃); Mass (FAB): m/z: 763 (MH+), 744 (M-H2O), 655, 637, 623, 605, 591, 587, 467, 437; HRMS calculated for C43H75O9Si (MH+.): Calcd: 763.5180; found: 763.5187.

(Received in UK 2 December 1993; revised 18 January 1994; accepted 28 January 1994)