

0040-4039(94)EO228-P

Studies Towards the Total Synthesis of Rapamycin: Preparation of the Cyclohexyl C33-C42 Fragment and Further Coupling to Afford the C₂₂-C₄₂ Carbon Unit.

Cyrille Kouklovsky, Steven V, Ley* and **Stephen** P. Marsden

Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 IEW, UK.

Abstract: A short and stereoselective synthesis of the C33-C42 fragment 3 of rapamycin and its coupling with the previously prepared C₂₂-C₃₂ fragment 2 is described. The synthesis of 3 involves the preparation of enantiomerically **enriched methylene cyclohexane derivative 7, followed by side-chain elaboration. The coupling is made by reaction of** the lithio anion of the dithioacetal monosulfone 11 on the epoxide 3.

In the previous paper,1 we reported our general synthetic plan towards the potent immunosuppressive agent rapamycin.² We also described the synthesis of the C₂₂-C₃₂ portion 2 of this molecule. Here we discuss **the preparation of the C33-C42 cyclohexyl epoxide fragment 3 and its subsequent coupling with 2 to afford a** fully functionnalized C₂₂-C₄₂ carbon framework 4 necessary for later transformation to the natural product **(Scheme 1).**

For the synthesis of 3, we have developed a method for the stereoselective synthesis of methylene cyclohexane derivatives as key intermediates, involving intramolecular reaction of an allylsilane with an oxonium cation generated from an α -alkoxysulfone.³ Thus, the previously prepared β -ketosulfone 5 was

subjected to asymmetric reduction using borane.DMS and 10% of the CBS oxaborolizidine catalyst⁴ to give the **ghydroxysulfone 6 along with the syn isomer in the ratio of 1:2 in** quantitative yield.5 The enantiomeric excess of the *anti* isomer was determined to be of 80% .⁶ The unwanted *syn* isomer could be readily oxidized (PDC, DCM) to 5 for recycling. The *anti* isomer 6, after silylation with tert-butyldimethylsilyl trifluoromethane sulfonate (TBS triflate) was treated with a solution of tin tetrachloride in dichloromethane at -78°C to give 7 in 60% overall yield, as a 5:1 ratio of trans/ cis isomers. Hydroboration of 7 to the alcohol 8 proceeded well and the minor stereoisomer from cyclization was **removed at this stage. 7 Following oxidation of 8 using Swem** conditions⁸ to give the intermediate aldehyde, addition $(-)$ - (E) crotyl diisocampheylborane afforded, after oxidative **work-up, 9 as the major product in 64% yield, readily separable from any contaminating isomers. The hydroxyl group in the** side chain is ideally placed to direct the final epoxidation reaction using standard conditions⁹ (TBHP, VO(acac)₂) to give 10 as a 4:1 mixture of diastereoisomers readily separable by **chromatography. The major isomer was** further deoxygenated *via* its thionocarbonate derivative by reduction with tributyltin hydride¹⁰ to give the desired epoxide 3^{11} in 70% yield for two steps (Scheme 2).

Scheme 2

a: BH₃/ DMS, 10% CBS, THF, 100%; syn / anti: 2:1; ee anti: 80%;b: TBSOTf, Pyridine, DMAP, CH₂Cl₂, 0^oC; \mathbf{A} c: SnCl₄, CH₂Cl₂, -78^oC, 60% overall; d: 9-BBN, THF, 0^o to 25^oC, H₂O₂, NaOH, 80%, separation of isomers; e: (COCI)₂, DMSO, Et₃N, CH₂Cl₂, 90%; f: (-)-(E)-(iPc)₂-CH₂-CH=CH-CH₃, THF/ Et₂O, -78^oC, H₂O₂, OH', separation of diastereoisomers; 70%; g: ^tBuOOH, VO(acac)₂, CH₂Cl₂, 90%; h: "BuLi, THF, -20°C, CIC(=S)OPh, **66%; i: "BusSnH, AIBN, Benzene, reflux, 66%.**

For the coupling of the components, we have chosen to use the methodology of Tokate¹² and co-workers **whereby a-sulfenyl sulfones are** used as acyl anion equivalents, Accordingly, sulfone 2 was deprotonated ('BuLi, THF, -78°C) and treated with dimethyl disulfide to give 11 as a 1:1 mixture of diastereoisomers (81%) yield) which was not purified but directly used in the next reaction. Thus, deprotonation of 11 ('BuLi, THF, -78^oC), addition of a solution of the epoxide 3 (1.1 eq.) followed by addition of boron trifluoride etherate (BF₃ etherate, 2 eq.) gave after 2 h (-78^o to 0^oC) the coupled product 4 in an unoptimised 46% yield (Scheme 3).

It is interesting to notice that upon work-up 4 is obtained with the ketone function already deprotectedl3. According to the work of Tokate, the hydrolysis of dithioketal monosulfones requires stronger conditions and long reaction times (CuCl₂, SiO₂ or anodic hydrolysis). In our case, we attribute the easy hydrolysis to the **presence of BF3 etherate which can hydrolyse** *in situ the* **dithioketal to thioketone derivative (Scheme 4). This** explains the need for two equivalents of BF₃ etherate in the coupling reaction.

Scheme 4

In conclusion, in a short sequence of reactions, the epoxide 3 has been prepared and coupled to a derivative of 2 to afford the C22-C42 carbon framework of rapamycin. Further functional group manipulation and completion of the synthesis are cunently under investigation and will be reported in due course.

Acknowledgements: **We thank the SERC for a Quota Award and Zeneca Agrochemicals for a postgraduate scholarship (to SPM) and BP for a Research Professorship Endowment (to SVL). Additional financial support from Pfizer Central Research is also gratefully acknowledged.**

References and footnotes

- 1. **Anderson, J.C. ,** *Ley,* **S.V. and Marsden, S.P., see previous paper and references therein.**
- $2.$ **Isolation: Vexina, C., Kudelski, A. and Sehgal. S.N.. J.** *Antibiof., W75,28,721;* **Sehgal, S.N., Baker. H. and Vexina. C., J.** *Anribiot.,* **1975.28.727; structure: Swindells D.C.N., White P.S. and Findlay J.A.,** *Can. J. Chem.,* **1978**, 56, 2491; Findlay J.A.and Radics L., *Can. J. Chem.*, **1980**, 58, 579.
- **3. Ley. S.V. and Kouklovsky, C.,** *Tetrahedron, in press.*
- **4.** Corey, E.J., Bashki, R.K. and Shibata, S., *J. Am. Chem. Soc.*, 1987, 109, 5551; this catalyst was **derived from (+) L-proline and prepared according to the procedure of Merck & Co: Matbre, D.J., Jones, T.K., Xavier, L.C.. Blacklock, T.J., Reamer, R.A., Mohan, J.J., Timer Jones, E.T., Hoogsteen, K., Baum, M.W. and Grabowski, E.J.J.,** *J. Org. Chem.* **1991.56, 751.**
- **5.** Satisfactory spectral and analytical data were obtained for all the proposed structures. Complete experimental data for intermediates 5, 6 and 7 (as racemic mixtures) can be found in ref. 3.
- **6.** The enantiomeric excess of *anti* 6 was diffucult to determinate by derivatization due to the low reactivity of the hydroxyl function. It was found easier to determinate the ee on a later intermediate.
- **7. 8.** The ee of 8 was determinated to be ca. 80% by ¹⁹F NMR analysis of the Mosher's ester derivative. **Desilylation of 8 (HF, CH₃CN) furnished (***IR 2R 4R***) 4-hydroxymethyl 2-methoxy 1-cyclohexanol,** $[\alpha]_D$ -45 ($c= 0.6$, CHCl₃), which is a degradation product of FK-506 and the optical rotation of which is **reported to he -57 (c= 0.5, CHC13): Tanaka, H., Kuroda, A., Murasawa, H., Hatanaka, H., Kino, T., Goto, T., Hashimoto, M. and Taga. T., J. Am.** *Chem. Sot.,* **1987,109, 5031.**
- **Mancuso, A.J. and Swem, D.,** *Synthesis,* **1981, 165.**
- **9. 10. Mihelich, E.D., Daniels, K. and Eickoff, D.J.,** *J. Am. Chem. Sot.,* **1981, 203, 7690. Robins. M.J. and Wilson, J.S.,** *J. Am. Chem. Sot.,* **1981,103, 932.**
- **11.** Data for epoxide 3: [α]_D= -20.95 (c= 0.99, CHCl₃); ¹H NMR (400 MHz, CDCl₃, rapamycin **numbering): 6 @pm): 3.39 (3H, s, OMe), 3.38 (lH, partially obscured m, C39-H), 2.89 (lH, dt. J= 9 and 2 Hz. C40_H), 2.67 (2H, m, C33-H x 2). 2.45 (1H. ddd, J= 6, 5 and 3. C34-H). 2.02 (lH, dt, J= 9 and 2, C3s-H ax.), 1.82 (1H. m, C35-H). 1.67 (lH, m. one of c4t-H), 1.48 (1H. m, one of C42-H),** 1.45-1.35 (3H, m, one of C₃₆-H, C₃₇-H and one of C₄₁-H), 1.22 (1H, m, one of C₃₆-H), 0.91 (1H, partially obscured m, one of C₄₂-H), 0.90 (3H, d, J= 7 Hz, C₃₅-Me), 0.88 (9H, s, 'BuSi), 0.83 (1H, **partially obscured m, C₃₈-H eq.), 0.07 and 0.05 (6H, 2s, Me₂Si); ¹³C NMR (100 MHz, CDCl₃): δ (ppm): 84.5 (C3g). 75.7 (Qo), 58.0 (C&. 57.2 (OMe), 45.5 (C33). 41.7 (C36). 36.6 (C3s). 33.9** (\tilde{C}_{41}) , 33.5 (C_{37}) , 33.2 (C_{35}) , 31.3 (C_{42}) , 25.9 $((CH_3)_3$ -C-Si), 18.2 $(Me_3$ -C-Si), 16.1 $(\tilde{C}_{35}$ -CH₃), -4.5 and -4.7 (Me₂-Si); Mass (EI): m/z: 329 (MH⁺), 328 (M⁺·), 313 (M-Me), 271, 239, 165, 147, 135, 121, **105,89 (lOO%), 73; HRMS calculated for ClgH3603Si; Calc: 328.2433: Found: 328.2405.**
- **12. Murata, Y., Inomata, K.. Kinoshita, H. and Tokate. H..** *Bull. Chem. Sot. Jpn.,* **1983,56.2534.**
- **13.** Data for compound 4: ¹H NMR (400 MHz, CDCl₃, rapamycin numbering): δ (ppm): 71.7 and 6.84 (2H, **2d, J= 8.3 Hz, Ar-H), 5.76 (lH, d, J= 9. C30-H). 4.53 (lH, d, J= 3, C22-H), 4.35 (IH, m, C34-H), 4.20 and 4.11 (2H. 2d, J= 10. CH2-Ar), 3.97 (lH, d, J= 8, Qa-H). 3.79 (3H, s, OMe), 3.71 (lH, m, probably OH), 3.68 (lH, d, J= 7, Cze-H). 3.40 (3H, s, OMe), 3.39 (lH, pattially obscured m, C39-H), 3.28 (3H. s, OMe), 3.25 (3H, s, OMe), 3.30 (lH, masked d, C27-H). 2.91 (lH, dt, Cm-H), 2.32-2.22** (3H, m, C₃₁-H and C₃₃-H x 2), 2.05 (1H, m, one of C₃₈-H), 1.88 (2H, m, C₂₃-H and C₂₅-H), 1.76 $(2H,m, C_{35}-H$ and one of C₄₁-H), 1.55 (3H, d, J= 0.8, C₂₉-Me), 1.60-1.36 (5H, m, one of C₂₄-H, C_{36} -H x 2, C_{37} -H and one of C₄₂-H, 1.28-1.12 (2H, m, one of C₂₄-H and one of C₄₁-H), 0.95 (3H, d, J= 7, C₃₅-Me, 0.91 (1H, masked m, one of C₄₂-H, 0.88 (18H, broad s, 'BuSi, C₂₃-Me, C₂₅-Me and C_{31} -Me), 0.83 (1H, masked m, one of C_{38} -H, 0.07 and 0.06 (6H, 2s, $Me₂Si$); the presence of the ketone **function is further confirmed by a signal at 216.3 ppm on the 13C spectrum (50 MHZ, CDCl3); Mass (FAB): m/z: 763 (MI-I+.), 744 (M- HzO), 655,637,623,605.591,587.467,437; HRMS calculated for (&H7@gSi @III+.): Calcd: 763.5180; found 763.5187.**

(Received in UK 2 December 1993; revised 18 January 1994; accepted 28 January 1994)